2001 COMPANY

2001 Co. ASCE – 7 – 03 Wind Uplift Evaluation Form
(Ask for Form - ASCE7dpi.doc)

To determine a roof’s wind uplift PSF (pounds per square foot)
Pressure requirement for building code compliance.
Essential criteria for evaluation.

1.) **Building name:** Coastal Medical Building

2.) **Building address:**
 Coastal Medical Building
 123 Medical Dr
 Coastal, NC

3.) **ASCE 7-03 mph wind design for location:** (See attached ASCE 7-03 mph contour map for: 120 MPH (North America)
 - [] 85
 - [] 90
 - [] 100
 - [✓] 120
 - [] 130
 - [] 140
 - [] 150

4.) **Height of building roof level from ground level:**
 - Highest roof elevation: ___60___ Main roof: __________ Lower sections: ___30___

5.) **Are any building sides on top of a hill?** If yes add height of hill to building height.
 - No
 - Building side: N.____ S.____ E.____ W.______ Hill elevation.

6.) **Partial enclosed building:** This building wind evaluation is where wind blown debris breaks windows louvers, doors etc. causing a 4’ x 4’ hole in the side of the building, now wind can fill the building with internal air pressure similar to blowing air into paper bag.
 - Yes

7.) **Roof Slope:** ___1/4_____ inch rise in 12 inches.
 If building slope is greater than 2” in 12” need to fill out peaked or barrel wind uplift evaluation form.

8.) **Building exposure to wind:** Exposure: **D**
 - [] A.) Low building protected on all sides by higher terrain or buildings………………..A…………..□
 - [] B.) Suburban building protected by buildings of equal size………………………………B…………..□
 - [] C.) Open terrain not protected by trees or other buildings………………………………C…………..□
 - [✓] D.) Hurricane prone regions and/or within 1 mile of a large body of water…………….D……………..♦

9.) **Topographic wind speed up:** (areas prone to high wind effects)
 - Escarpment: A rising hill in front of an open plain or body of water, Valley, Canyon, bottom of cliff, or top of a mountain.
 - No
10.) **Safety Factor:** To compensate for original construction flaws and aging of building component materials over the years. Plus consideration of human life preservation and community service during natural disasters and civil unrest.

1. **0% Safety Factor:** Actual ASCE 7-03 pressure.

2. **15% Safety Factor:** for low human occupancy residential.

3. **50% Safety Factor:** for 30 or more people occupancy multi family dwellings, small office, manufacturing, and school rooms of over thirty people occupancy FEMA standard.

4. **100% Safety Factor:** Critical facility for high person occupancy, providing human services during national disaster, hospitals, medical centers, police, power stations, fire departments, government service buildings and school.

Describe Building Use and Safety Factor Needed:________ Hospital 100 %

ASCE 7 Wind design calculations in PSF (pounds per square foot) pressure:

11.) **ASCE 7 – 03 – Actual no safety factor:**

Safety Factor: 0% Corner: 144 Perimeter: 96 Field: 57

12.) **Safety Factor 15%: Residential under 30 people occupancy:**

Safety Factor: 15% Corner: _________ Perimeter: _________ Field: _______

13.) **Safety Factor: 50%: Low occupancy 30 people or more:**

Safety Factor: 50% Corner: _________ Perimeter: _________ Field: ______

14.) **Safety Factor: 100% High person occupancy Natural Disaster support facility:**

Safety Factor: 100% Corner: 288 Perimeter: 192 Field: 114

EVALUATION REQUEST FORM – OTHERS TO COPY

Name: ____________________________ Fax: ____________________________

Firm: ____________________________ E-Mail: ____________________________

Address: ____________________________ Phone: ____________________________
2001 Co. ASCE 7 – 03 Wind Up Lift Evaluation Form
Part 2 - Non-essential factors for ASCE 7 - 03

These items can lessen or increase wind uplift for the specific building.

1.) **Adjoining building attached that will funnel wind into the building**
 - □ Yes ♦ No
 - Causing inside corner wind spill on the roof
 - Example: intersecting wings L or T shaped
 - □ Yes ♦ No
 Describe: __

2.) **Up wind buildings shedding wind vortices Into the building:**
 - □ Yes ♦ No

3.) **Predominant wind direction into building:** Circle N, S, E, W, NE, SE, SW, NW
 Describe: __

4.) **Within one mile of the coast or large body of water:**
 - □ Yes ♦ No

5.) **Building perimeter edge:** (Length and type)
 A.) Parapet length:_________ Height:___________
 B.) Gravel stop length:______________
 C.) Extended Soffit:___________________________
 D.) Other:________________________

6.) **Internal pressurized building:** Positive pressure in HVAC, system or Multi temperature change, Food Processing, Foundry, and medical facilities.
 - ♦ Yes □ No
 - Building Use:__

7.) **External air current diversions causing local low pressure regions on a roof:**
 A.) Signs or high walls...□ Yes ♦ No
 B.) Mansards or protruding soffits..□ Yes ♦ No
 C.) Exterior stair or elevator walls..□ Yes ♦ No
 D.) Adjoining building section..♦ Yes □ No
 E.) Penthouse and higher on roof structure..................................♦ Yes □ No

8.) **Partially open building:** 4’ by 4’ window or door broken open by flying debris.
 A.) Open airplane hanger or storage shed with one side that could be open to the wind creating internal building pressure.................................□ Yes ♦ No
 B.) Truck doors or drive through side entrance areas that could be open into the wind filling the building with air pressure.................................♦ Yes □ No
 C.) 4’ x 4’ Glass front, or doors or curtain walls that can be broken open by flying debris filling the building with air pressure♦ Yes □ No
9.) **Air permeable roof deck:** No vapor barrier or air barrier. □ Yes ♦ No

10.) **Deck or existing roof substrate air sealed by one option below:**
A.) Repaired existing roof membrane in re-roofing. □
B.) Air barrier 5 mil reinforced poly sheeting mechanically fastened with new insulation boards. □
C.) Air seal deck joints with 2001 Co., deck adhesive caulk or term bar tape. □
D.) 2001 Co., slow rise adhesive foam sprayed into and over deck joints. □

11.) **2001 Co., patented perimeter and penetration and protrusion air seals:** □ Yes □ No
□ OSB □ Shear Skirt □ Upside down cover tape □ Direct membrane termination
□ Other: __

12.) **Hot air stacking effect:** Four stories or greater with open shaft areas for hot air to rise to the roof deck and permeate into the roof assembly. □ Yes □ No

13.) **Curtain wall construction open to roof or parapet height:**
To channel building hot air into the flashing or roof assembly. □ Yes □ No

14.) **Roof edges over 100 ft., in length where secondary wind vortices develop:**
Or vertical building obstruction that will channel air up the wall □ Yes □ No

15.) **Roof assembly descriptions:**

1.) **Deck:** __

2.) **Existing roof assembly description:** (Write in specific assembly attachment)

 A.) Vapor or air barrier on deck: □ Yes □ No

 Describe: ___

 B.) Insulation: 1.5” Iso / ¼” Perlite

 C.) Water proofing membrane: 2 Ply Granular BUR Surface

3.) **Preparation for re-roofing:** Tear off to existing metal deck

4.) **New 2001 Roof assembly description:** □ or 2001 re-roofing over existing roof deck:

 A.) Air barrier: __

 B.) Insulation: __

 C.) Cover board: __
D.) Separator sheet: ___
E.) Attachment: ___
F.) Waterproofing membrane: ___
G.) Attachment method: ___

Building Code Compliance and Other Roof Design Concerns

16.) Snow load design area: ___
17.) Dead load capacity of roof structure: ___
18.) Live load capacity of roof structure: ___
19.) Water flow capacity of roof drains: ___
20.) Capacity of internal drains: ___
21.) Capacity of overflow scuppers: ___
22.) Roof top equipment weight added to roof deck: ___
23.) Internal building equipment weight added to roof deck: ___
24.) Other significant building specific design concerns:

25.) Applicable area codes and approvals:

LEFT B LANK INTENTIONALLY
ASCE 7 – 03 Wind Uplift Design Calculations:

Wind uplift is acceptable to a PSF (per square foot) pressure

21.) ASCE 7 – 03 actual design 0% safety factor – residential (single family home).3

| Safety 0% | Corner: 144 | Perimeter: 96 | Field: 57 |

Safety factors for construction flaws and roof assembly material aging:

22.) Safety Factor: 50% 30 person occupancy office store manufacturing warehouse facility

| Safety 50% | Corner: | Perimeter: | Field: |

23.) Safety Factor: 100% High person occupancy and valuable content inside: Hospitals, schools, power stations, police, fire, communications, 911 Facilities, and placed where the public would go shelter in a natural disaster.

| Safety 100% | Corner: 288 | Perimeter: 192 | Field: 114 |

Disclaimer:

2001 Company has provided the following ASCE 7 – 03 wind up lift calculations on information provided by others. These calculations are provided as a guide and 2001 Company makes no claim to the accuracy of these figures.

Actual wind designs pressures for a roof on a specific building should be preformed by a licensed engineer or an architect familiar with the Local code requirements where the building is located.